TMT观察 要闻

首页 要闻

凤凰娱乐平台app:追热剧看原著UC小说上架《春风十里不如你》冯唐原版小说

凤凰平台在线注册2020-07-17

凤凰搏彩平台:猫重达14斤,每早4、5点就在主人身上疯狂踩奶,而且还...

新华网布拉格2月17日电(记者孙希有)北京育才学校管乐团的50名师生,一周前抵达素有音乐国度之称的捷克。近一个星期来,他们在捷克各地学校进行演出和交流,受到当地学生和老师的欢迎。

京剧是个好东西,当然需要传承。但教育部采取在中小学开设京剧课的方式来“强力推广”,笔者认为不妥、不必。

去简阳的路上作家们一直在谈论周克芹。一路的山,水,树,苞米,土地,仿佛都浸透了周克芹的气息。生与死,贫困与奋斗,光荣与梦想。这块厚土养育了周克芹,最后又过早地埋葬了周克芹,冥冥之中,这就是命运的力量?你能想到吗,早年周克芹最穷的时候,妻子坐月子,食无肉。屋里连柴棒都没一根多的。怎么办?心一横:卖门板!既然家无长物,夜间何须闭户?周克芹不去近处的简阳城,而从山间绕远道去石桥镇,怕撞见熟人。谷草挽圈,门板上一插,做出售标志。这辛酸的情节,后来在《许茂和他的女儿们》里,演化成金东水卖毛衣。试想在一个没有门板的寒宅里,一个胃里连红薯也填不满的乡土作家,陋室青灯,长年累月地书写着一部部关于中国农民的大书,这是何等的中国特色。

凤凰网双色球:《新四大美女图》:美女质疑多

  2006年2月13日第五届国际高等教育大会在古巴首都哈瓦那举行,国务委员陈至立出席大会开幕式并讲话。教育部部长周济等22个国家的教育部长出席了开幕式。

昨日,记者来到武汉一所复读学校,10余名学生和家长正忙着咨询、交费。该校工作人员告诉记者,高考结束后至今,已登记有复读意向的考生有上千人,学校只计划招生300多人。“前来咨询的家长最关心两点,一是学校师资水平,二是管理是否严格。”“复读学校对外宣传的名师,不晓得是不是真的?”在咨询现场,几名学生家长都向记者抱怨,他们已到几家复读学校“踩点”,但是,很多学校在宣传师资时都说是“特级教师”王老师、李老师等,有丰富的高三教学经验。但他们到底是谁,学校往往以不便公开为由拒绝细谈。

出来上学这几年,施晨光很牵挂家里九十五岁的老父亲和八十多岁的老母亲。“他们年纪大了,也想我回去,加上我这么大年龄已经没有资格参加全国统一的研究生考试了,所以我想明年毕业后就先回家去办个培训班,将自己学到的知识传授给别人。”他也在留意一些研究生培养信息,最近他就打听到了南大、南艺都有艺术硕士班,这个没有年龄门槛,也令他很动心。“以后有机会我还是要再进大学读研究生的,吸引我的是这种淡泊宁静而又宽松的大学生活,可以真正静下心来多读一点书。”(实习生黄睿记者石小磊)

凤凰搏彩平台:彭瑞林主持召开湘乡市整治非法采(洗)砂工作推进会

假和贪,是横穿在大学血肉中的两根大刺,不拔出来,早晚会葬送掉中国原本就不敦厚的学术声誉。而大学校长的护短,这样的短视行为,更令人为中国的大学命运担忧!(刘海明)

面对初相识的陌生人,可以由交谈几句无关紧要的话开始,若老坐着闭口不语,一脸肃穆表情,与欢愉的宴会气氛便格格不入了。

据西安交大招生办介绍,在申请西安交通大学的考生中,有相当一部分同学同时通过了两所学校的初审。这些考生如果能够同时达到两所学校的要求,则可以由考生自主地在两所学校中选择其一进行签约。

凤凰双色球:惊到了!夏威夷华裔小姐选美,获奖者竟是这样的画风

新华网上海3月26日电(记者黄安琪)“今年找工作挺容易,工资水平也看涨,专业性较强的毕业生大多能找到较满意的工作。”上海工程技术大学机械工程学院的应届毕业生肖佑升说。

2010年,我国将进一步加强农民工技能培训工作。杨志明说,这将有利于从根本上拓宽农民工的就业渠道,提升他们的就业质量;有利于农民工克服融入城镇的障碍,促进城镇化建设;有利于提高我国人力资源的总体水平,对发挥我国人力资源的巨大优势有重要意义。

由教育部考试中心编写的《2006年普通高等学校招生全国统一考试大纲》,近日正式推出。该大纲对2006年高考的性质、内容和形式等作了明确规定。  与去年相比,今年的“考试大纲”修订了有关科目的考试目标,并对考试范围、试卷基本结构等作了调整和说明,以便更好地适应高校招生需要和中学教学实际,对中学全面实施素质教育发挥积极的作用。  为了帮助广大考生科学备考,避免考试中的盲目性,减轻不必要的负担,本刊今日特别推出高考特刊,向读者介绍《2006年普通高等学校招生全国统一考试大纲》中语文、数学、英语、文科综合、理科综合的考试内容、考试形式以及试卷结构等。  考试内容  1.平面向量  考试内容:向量、向量的加法与减法、实数与向量的积、平面向量的坐标表示、线段的定比分点、平面向量的数量积、平面两点间的距离、平移。  考试要求:  (1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念。  (2)掌握向量的加法与减法。  (3)掌握实数与向量的积,理解两个向量共线的充要条件。  (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。  (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。  (6)掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式。  2.集合、简易逻辑  考试内容:  集合、子集、补集、交集、并集。  逻辑联结词、四种命题、充分条件和必要条件。  考试要求:  (1)理解集合、子集、补集、交集、并集的概念,了解空集和全集的意义,了解属于、包含、相等关系的意义,掌握有关的术语和符号,并会用它们正确表示一些简单的集合。  (2)理解逻辑联结词“或”、“且”、“非”的含义,理解四种命题及其相互关系,掌握充分条件、必要条件及充要条件的意义。  3.函数  考试内容:  映射、函数、函数的单调性、奇偶性。  反函数、互为反函数的函数图像间的关系。  指数概念的扩充、有理指数幂的运算性质、指数函数。  对数、对数的运算性质、对数函数。  函数的应用。  考试要求:  (1)了解映射的概念,理解函数的概念。  (2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法。  (3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数。  (4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质。  (5)理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图像和性质。  (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题。  4.不等式  考试内容:  不等式、不等式的基本性质、不等式的证明、不等式的解法、含绝对值的不等式。  考试要求:  (1)理解不等式的性质及其证明。  (2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。  (3)掌握分析法、综合法、比较法证明简单的不等式。  (4)掌握简单不等式的解法。  (5)理解不等式│a│-│b│≤│a+b│≤│a│+│b│  5.三角函数  考试内容:  角的概念的推广、弧度制。  任意角的三角函数,单位圆中的三角函数线,同角三角函数的基本关系式:正弦、余弦的诱导公式。两角和与差的正弦、余弦、正切;二倍角的正弦、余弦、正切。  正弦函数、余弦函数的图像和性质,周期函数,函数y=Asin(ωx+渍)的图像,正切函数的图像和性质,已知三角函数值求角。  正弦定理、余弦定理、斜三角形解法。  考试要求:  (1)理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算。  (2)掌握任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义,掌握同角三角函数的基本关系式,掌握正弦、余弦的诱导公式,了解周期函数与最小正周期的意义。  (3)掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式。  (4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明。  (5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数等的简图,理解A、ω、φ的物理意义。  (6)会由已知三角函数值求角,并会用符号arcsin x、arccos x、arctan x表示。  (7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形。  6.数列  考试内容:  数列。  等差数列及其通项公式,等差数列前n项和公式。  等比数列及其通项公式,等比数列前n项和公式。  考试要求:  (1)理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。  (2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。  (3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。  7.直线和圆的方程  考试内容:  直线的倾斜角和斜率,直线方程的点斜式和两点式,直线方程的一般式。  两条直线平行与垂直的条件,两条直线的交角,点到直线的距离。  用二元一次不等式表示平面区域,简单的线性规划问题。  曲线与方程的概念,由已知条件列出曲线方程。  圆的标准方程和一般方程,圆的参数方程。  考试要求:  (1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。  (2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系。  (3)了解二元一次不等式表示平面区域。  (4)了解线性规划的意义,并会简单的应用。  (5)了解解析几何的基本思想,了解坐标法。  (6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程。  8.圆锥曲线方程  考试内容:  椭圆及其标准方程,椭圆的简单几何性质,椭圆的参数方程。  双曲线及其标准方程,双曲线的简单几何性质。  抛物线及其标准方程,抛物线的简单几何性质。  考试要求:  (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程。  (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质。  (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质。  (4)了解圆锥曲线的初步应用。  9(A).直线、平面、简单几何体  考试内容:  平面及其基本性质,平面图形直观图的画法。  平行直线,对应边分别平行的角,异面直线所成的角,异面直线的公垂线,异面直线的距离。  直线和平面平行的判定与性质,直线和平面垂直的判定与性质,点到平面的距离,斜线在平面上的射影,直线和平面所成的角,三垂线定理及其逆定理。  平行平面的判定与性质,平行平面间的距离,二面角及其平面角,两个平面垂直的判定与性质。  多面体、正多面体、棱柱、棱锥、球。  考试要求:  (1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图,能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。  (2)掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离。  (3)掌握直线和平面平行的判定定理和性质定理,掌握直线和平面垂直的判定定理和性质定理,掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念,掌握三垂线定理及其逆定理。  (4)掌握两个平面平行的判定定理和性质定理,掌握二面角、二面角的平面角、两个平行平面间的距离的概念,掌握两个平面垂直的判定定理和性质定理。  (5)会用反证法证明简单的问题。  (6)了解多面体、凸多面体的概念,了解正多面体的概念。  (7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。  (8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。  (9)了解球的概念,掌握球的性质,掌握球的表面积、体积公式。  9(B).直线、平面、简单几何体  考试内容:  平面及其基本性质,平面图形直观图的画法。  平行直线。  直线和平面平行的判定与性质,直线和平面垂直的判定,三垂线定理及其逆定理。  两个平面的位置关系。  空间向量及其加法、减法与数乘,空间向量的坐标表示,空间向量的数量积。  直线的方向向量,异面直线所成的角,异面直线的公垂线,异面直线的距离。  直线和平面垂直的性质,平面的法向量,点到平面的距离,直线和平面所成的角,向量在平面内的射影。  平行平面的判定和性质,平行平面间的距离,二面角及其平面角,两个平面垂直的判定和性质。  多面体、正多面体、棱柱、棱锥、球。  考试要求:  (1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图;能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。  (2)掌握直线和平面平行的判定定理和性质定理,掌握直线和平面垂直的判定定理,掌握三垂线定理及其逆定理。  (3)理解空间向量的概念,掌握空间向量的加法、减法和数乘。  (4)了解空间向量的基本定理;理解空间向量坐标的概念,掌握空间向量的坐标运算。  (5)掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间距离公式。  (6)理解直线的方向向量、平面的法向量、向量在平面内的射影等概念。  (7)掌握直线和直线、直线和平面、平面和平面所成的角、距离的概念。对于异面直线的距离,只要求会计算已给出公垂线或在坐标表示下的距离,掌握直线和平面垂直的性质定理,掌握两个平面平行、垂直的判定定理和性质定理。  (8)了解多面体、凸多面体的概念,了解正多面体的概念。  (9)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。  (10)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。  (11)了解球的概念,掌握球的性质,掌握球的表面积、体积公式。  考生可在9(A)和9(B)中任选其一  10.排列、组合、二项式定理  考试内容:  分类计数原理与分步计数原理。  排列、排列数公式。  组合、组合数公式、组合数的两个性质。  二项式定理、二项展开式的性质。  考试要求:  (1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。  (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。  (3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。  (4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。  11.概率  考试内容:  随机事件的概率,等可能性事件的概率,互斥事件有一个发生的概率,相互独立事件同时发生的概率,独立重复试验。  考试要求:  (1)了解随机事件的发生存在着规律性和随机事件概率的意义。  (2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。  (3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。  (4)会计算事件在n次独立重复试验中恰好发生k次的概率。  12.统计  考试内容:  抽样方法、总体分布的估计。  总体期望值和方差的估计。  考试要求:  (1)了解随机抽样、分层抽样的意义,会用它们对简单实际问题进行抽样。  (2)会用样本频率分布估计总体分布。  (3)会用样本估计总体期望值和方差。  13.导数  考试内容:  导数的背景。  导数的概念。  多项式函数的导数。  利用导数研究函数的单调性和极值,函数的最大值和最小值。  考试要求:  (1)了解导数概念的实际背景。  (2)理解导数的几何意义。  (3)掌握函数y=c(c为常数)等导数公式,会求多项式函数的导数。  (4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值。  (5)会利用导数求某些简单实际问题的最大值和最小值。  《中国教育报》2006年3月15日第5版

凤凰娱乐平台app:邓紫棋独特发音秘诀自认实力远超林宥嘉

唐承沛代表安徽省政府对台胞青年的到来表示热烈欢迎,简要介绍了安徽省情和皖台交流情况。他说,安徽与台湾历史渊源深厚,交流交往密切,特别是两岸实现“三通”后,皖台间经贸、旅游、文化交流加速推进。在两岸和平发展为主题的新形势下,安徽将认真贯彻落实中央关于对台工作的部署,进一步加强皖台经贸合作,大力推进皖台交流,努力为开创两岸关系和平发展新局面多作贡献。希望皖台两地青年加强交流,增进友谊,携手同心,共同分享两岸和平发展的成果,共同迎接两岸和平发展的未来。

责编 左云霞

特别提醒:如果我们使用了您的图片,请作者与本站联系索取稿酬。如您不希望作品出现在本站,可联系我们要求撤下您的作品。

凤凰双色球

凤凰搏彩平台

0